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Abstract 
Empirical studies have shown that work zones are responsible for a large 
proportion of non-recurrent congestion and have higher crash rates than similar 
roadways without work zones.  Consequently, a great deal of attention has been 
focussed over the past several years on the management of traffic and safety 
within work zones. A key component of traffic management in work zones is the 
ability to notify travellers of the travel time they will experience if they elect to 
travel through the work zone.  

The currently available work zone FTMS use relatively crude travel time 
estimation algorithms. Furthermore, these systems are able to provide estimates 
only of the current travel time not the travel time that drivers entering the work 
zone will experience (i.e. predictive travel time).  

This paper examines the issues associated with estimating current and predictive 
travel times in work zones and reviews approaches that have been suggested in 
the literature. Several potential travel time prediction algorithms are presented, 
including one that makes use of Kalman Filtering.  

A field database for work zones containing sensor data from re-deployable 
FTMS and true vehicle travel time data is not currently available.  Consequently, 
the algorithms presented in this paper are evaluated using data generated from 
the INTEGRATION traffic simulation model. The evaluation considers a 
number of factors including traffic conditions and sensor accuracy.  
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1 Introduction 

The management of traffic in highway work zones is of increasing concern to 
motorists and to highway authorities. There are several likely reasons for this 
increasing concern, including: 

1. Motorists are generally experiencing longer and more congested trips 
than they have in the past. 

2. Aging infrastructure is requiring more frequent and/or more extensive 
rehabilitation, resulting in increased frequency and duration of work 
zones. 

3. The high level of traffic demands on most urban freeways throughout a 
long portion of the day means that lane closures associated with work 
zones cause a much higher user delay cost than has been the case in the 
past.  

The continuing development of ITS technologies has led to the recent 
development of commercially available re-deployable FTMS.  These systems 
typically consist of trailers on which there are mounted changeable message 
signs (CMS), traffic sensors, such as video or microwave radar, wireless 
communication devices, solar panels and/or a generator, and computer control 
device.  These systems are considered to be re-deployable as they can be brought 
to a field site and made operational without any permanent installation.  After the 
construction project is finished and the FTMS is no longer needed, the entire 
system can be removed from the site and deployed elsewhere.  

Highway officials have recognized that one of the most frustrating aspects of 
work zones for motorists is the highly variable and therefore often unexpected 
delays that result from the work zone activities. One means of mitigating this 
frustration is to provide motorists with a real-time estimate of the travel time 
they can expect to experience traversing the work zone.  Providing this 
information has two main effects: 

1. Motorists have the option to select an alternative route (though in most 
instances they may have little information about the conditions on 
alternative routes). 

2. Motorists tend to find the delay less disruptive when they know how 
long the delay will be.  

Most existing re-deployable FTMS that provide estimates of travel time do so on 
the basis of historical information.  These systems typically estimate the travel 
time of vehicles that have traversed the roadway section and post this travel time 
on the CMS at the upstream end of the road segment.  This can be illustrated in 
Figure 1 which depicts individual vehicle trajectories over space and time.  The 
vehicles are approaching a work zone that acts as a capacity bottleneck.  The 
vehicle arrival rate is higher than the capacity of the work zone resulting in the 
formation of a queue, which is indicated in Figure 1 by the change in speed of 



vehicles as they transition from the uncongested traffic stream approaching the 
work zone to the congested queue that grows upstream from the work zone.  

Consider a vehicle denoted as V1 which experiences a travel time of tt1. If this 
travel time is measured, or approximated on the basis of measured traffic 
conditions, and is posted on a CMS at sensor station S1, then the vehicle V2 will 
past the CMS at the time that the travel time is posted. However, as the queue is 
growing, the travel time that vehicle V2 experiences (tt2) is actually considerable 
longer than the travel time posted on the CMS.   

There are many studies reported in the literature related to the area of travel time 
prediction. These studies can be divided into two categories, namely (1) those 
that directly measure travel time using specializes infrastructure such as 
Automatic Vehicle Identification (AVI) or cellular telephone tracking [1,2,3]and 
(2) those that indirectly estimate travel time on the basis of traffic characteristics 
such as volume, speed and occupancy obtained from traditional traffic sensors 
such as loop detectors [4,5,6,7,8]. Even though �direct� travel time prediction 
techniques generally improve travel time prediction accuracy, the specialized 
infrastructure these methods require are not yet widely deployed.  

Most of the existing indirect travel time prediction methods assume speed data 
are available from traffic sensors. However, re-deployable FTMS have roadside 
sensors that generally cannot measure speed accurately. Consequently, many 
existing travel time estimation methods are not applicable to work zone FTMS.   

The TIPS system (Travel Time Prediction System) [9] is one notable work zone 
FTMS that is able to provide travel time estimates. This system consists of 
microwave radar traffic sensors, trailer mounted changeable message signs 
(CMS), micro controller, 220 MHz radios for transmitting traffic data and an on-
site PC with TIPS software. The TIPS system has been widely deployed in the 
US [10] for work zone traffic control.  

A review of the literature revealed one field evaluation of the accuracy of the 
TIPS travel time estimation capability [11]. This study was conducted at a single 
work zone on northbound direction of I-75 in the Dayton, Ohio area.  I-75 
consists of three lanes in this area.  The work zone activities resulted in the 
closure of one lane over a length of approximately 6.5 km.  The TIPS system 
consisted of 3 CMS with the first located approximately 20 km upstream of the 
work zone.  The remaining two CMS were spaced approximately 16 km 
upstream and 12 km upstream of the work zone respectively.  

The TIPS system was configured to provide estimates of the travel times drivers 
would experience from the location of the CMS to the end of the work zone. 
Estimates were to the nearest 4 minutes and estimates were updated every 3 
minutes.  

The evaluation was conducted by the Ohio DOT over a period of 3 days.  Three 
floating vehicles were used to travel through the work zone area and record the 
predicted travel time posted on the each of the CMSs and the actual travel time 



experienced.  A total of 119 runs were conducted over the 3 days. The authors of 
the study report that 88% of all the predicted travel times recorded as part of the 
evaluation were within 4 minutes of the recorded true travel time. The authors 
conclude that the TIPS system provides significant improvement over any static 
non-real time display assuming proper placement of the microwave sensors.  
However they also note that errors in travel time prediction can be quite large 
relative to the observed travel time under certain conditions. 

In light of the findings from this field evaluation of TIPS [11], the objective of 
this research is in to investigate the potential for improving upon the travel time 
prediction accuracy of the TIPS system. 

This paper is organized as follows.  The next section describes the existing TIPS 
travel time estimation methodology and the proposed methods.  Section 3 
describes the evaluation of the travel time prediction methods. Conclusions and 
recommendations are provided in Section 4. 

2 Travel time estimation methods 

2.1 TIPS 

The TIPS travel time prediction method estimates travel time on the basis of 
calibrated speed versus weighted occupancy relationships and known roadway 
lengths. Weighted occupancy is computed on the basis of individual lane 
occupancies as defined in Equation 1. 
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where: 
Ow = weighted occupancy (%) 
Oi = measured occupancy in lane i (%)  
λi = weight factor for lane i (0 ≤ λ ≤ 1) 
n = number of lanes 

The weight factors are computed using Equation 2. 
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The TIPS system makes use of microwave radar traffic sensors that are not 
capable of measuring traffic speeds.  Consequently, the calibration of the speed 
versus weighted occupancy relationship was conducted by collecting vehicle 
travel time data [9]. Video cameras were positioned approximately 2 km apart 
upstream of a work zone on I-70 and the travel times of individual vehicles were 
extracted manually by identifying vehicles as they entered and exited the section.  
The travel times were converted to an average travel speed by dividing the 
section length by the travel time.  These average travel speeds were used to 



calibrate the speed versus weighted occupancy relationships. Approximately 15 
hours of data were collected. 

Two exponential relationships were calibrated; a single regime and a three-
regime model.  Each model was of the form in Equation 3.  Parameter values are 
provided in Table 1 and the relationships are illustrated in Figure 2.  The authors 
concluded that the 3-regime model provides better prediction accuracy and 
recommended its use. It must be noted, that a single set of parameter values is 
used for all sensor stations.  

  (3) wO
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where: 
Sj = average speed computed for sensor station j (ft/sec) 
θ, β = calibration coefficients 
Ow = weighted occupancy (%) 

Figure 3 illustrates the calculation method used to estimate the travel time 
between two successive TIPS sensor stations.  The weighted occupancy is 
computed at each sensor station and is applied to the three-regime speed versus 
occupancy relationship to estimate speed.  The travel time for the road segment 
between the two sensor stations is computed as in Equation 4. 
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where: 
Tj,j+1 = travel time from sensor j to sensor j+1 
d j,j+1 = distance from sensor j to sensor j+1 
Sj = speed measured at sensor j 
Sj+1 = speed measured at sensor j+1 

 

2.2 Variation of TIPS 

This method is a simple variation of the TIPS method described in the previous 
section.  In this variation, a speed versus weighted occupancy relationship is 
calibrated for each sensor station rather than using a single set of parameter 
values for all sensor stations.  This is the only difference from the TIPS method 
described in the previous section. 

2.3 Kalman Filter 

Kalman Filtering, one of the most advanced methods in modern control theory, 
is based on theory proposed by Kalman [12] and may be applied to short term 
stationary or nonstationary stochastic phenomena.  In traffic it can be applied for 
demand and travel time prediction to obtain increased accuracy. 



Traditional estimation methods are able to only provide estimates of the current 
travel time through the road section, rather than the travel time that vehicles will 
experience (predictive travel times). Kalman filtering makes use of previous and 
current observations to provide predictions of future travel times.  

In this study, Kalman Filtering is used to predict travel time based on real-time 
travel time information provided by the TIPS system using the 3-regime speed 
versus occupancy relationship.  

The Kalman filter method is based on two primary relationships denoted the 
process equation (Equation 5) and the observation equation (Equation 6).  
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where: 

kX  = travel time at time interval k 

1, −kkF  = transition parameter which is externally determined. 
w = a noise term that has a normal distribution with zero mean and 

a variance of Qk-1. 
yk = travel time for interval k provided by TIPS system or other 

proposed methods. 
v = observation error at time interval k which is assumed to have a 

normal distribution with zero mean and a variance of Rk. 
Hk = identity matrix, which in this application is a single dimension 

and consequently has a value of 1. 

Parameters, Fk,k-1, Qk-1 and Rk, are predetermined in advance from empirical data. 
If no value is available for Qk-1 and Rk, it is customary to express them as 
diagonal matrices [13]. 

Based on the objective of minimum state error, the travel time prediction 
equation can be expressed as:  
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where: 
Gk = Kalman gain value which is adjusted continuously by the 

recursive process 
∧
−
kX  = the optimum estimate of Xk before yk is obtained 

kX
∧

 = the travel time at time interval k to be predicted 

The actual method of implementing the above equations, beginning at time k=0, 
is specified below:  
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Step 5. Let k=k+1 and go back to Step 2 until the preset time period ends 

The next section describes the quantitative comparison of the TIPS system 
(section 2.1) with the variant of the TIPS system (section 2.2) and the Kalman 
filter (section 2.3). 

3 Evaluation of travel time estimation methods 

3.1 Test network  

At the time of this study, a field database containing both sensor data (i.e. 
volume and occupancy) for a work zone and the corresponding actual travel 
times was not available. The collection of such data is time consuming and 
costly.  Furthermore, it is difficult to control external factors (such as weather, 
demand, incidents, etc.) when collecting field data. Consequently, in this study, a 
microscopic simulation model was used to generate the data (sensor and travel 
time) that were used to evaluate existing and proposed travel time estimation 
algorithms. For this study, the INTEGRATION traffic simulation model was 
used, however, any microscopic simulation model capable of modelling 
freeways and recording individual vehicle travel times could have been used.  

A typical freeway work zone was modelled as illustrated in Figure 4. The 
freeway segment consists of an off-ramp and on-ramp junction followed by the 
work zone. The freeway, consisting of 7 links, has 3 lanes except in the work 
zone where the cross section is reduced to 2 lanes.  Furthermore, the capacity of 
the freeway lanes in the work zone is reduced from the 2,200 pcu/h/lane to 2,000 
pcu/h/lane as a result of reduced lateral clearances and/or reduced lane widths. 
There are 8 sensor stations (labelled S1, S2�, S8) located along the freeway 
section.  Consistent with the objective of re-deployable traffic management 
systems, it is assumed that these sensors are roadside sensors (e.g. radar or 
video) rather than in-pavement sensors such as loop detectors.  

The INTEGRATION model requires the specification of the four parameters that 
define Van Aerde�s steady-state macroscopic speed-flow-density relationship.  



The parameter values used in this study are provided in Table 2 while Figure 5 
illustrates the corresponding macroscopic speed-flow relationships. 

A temporally varying traffic demand was created to be representative of a typical 
peak period in which traffic demands are initially sufficiently low that no 
congestion results upstream of the work zone.  However, as demand increases, 
congestion begins to form at the bottleneck caused by the lane reduction at the 
work zone and this congestion spills back upstream and eventually interferes 
with traffic entering and exiting the freeway at the ramps.  The congestion does 
not spill off the upstream end of the network before the traffic demand declines 
and the congestion dissipates before the simulation period ends. The temporal 
variation, in terms of the fraction of the base rate, is the same for all three origin-
destination combinations (i.e. mainline to off-ramp; mainline to mainline; and 
on-ramp to mainline) and is illustrated in Figure 6. Vehicles are generated with 
random (i.e. shifted negative exponential headways). 

The application of these traffic demands to the test network results in a travel 
time profile as illustrated in Figure 7.  In this figure, the x-axis represents the 
time at which vehicles passed the start of link 2.  The y-axis represents the time 
the vehicle required to travel from the start of link 2 to the end of link 6.  
Naturally, only vehicles that are travelling from the mainline to the mainline are 
included within these results.  Vehicles that enter or exit the freeway via the 
ramps do not traverse all of links 2, 3, 4, 5, and 6 and therefore are not depicted. 

INTEGRATION models loop detectors that provide speed, volume, and 
occupancy output at a user defined polling interval duration.  In this study we 
have used a polling interval duration of 90 seconds.  Unlike field sensors, the 
simulation output does not contain measurement errors.  Unfortunately, the 
magnitude and distribution of these measurement errors for various sensor 
technologies, and in particular microwave radar, does not appear to be reported 
in the literature.  Consequently, we have represented the error in terms of 
Gaussian noise having a mean of zero and a standard deviation that is specified 
by the coefficient of variation (COV). Three levels of sensor error were 
considered; COV = 10%, 15%, and 20%.  Increasing values for COV imply 
decreasing sensor accuracy and therefore we refer to three levels of sensor 
accuracy as 90% accurate, 85%, and 80%. Consequently, Equation 8 was used to 
transform all sensor output from the simulation to sensor measurements 
containing random errors. 

 σzXX m +=  (8) 

where: 
Xm = traffic characteristic containing sensor measurement error 
X =  traffic characteristic containing no error 
z = normally distributed random variable with mean of 0 and 

standard deviation of 1 
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Ui = uniformly distributed random variable (0 ≤ Ui ≤ 1.0) 
σ = standard deviation of measurement error (σ = COV × X) 

In the course of the research, it was observed that the speed versus weighted 
occupancy data produced by the simulation model exhibited substantially 
different characteristics than did those data used by Pant [9] for calibrating the 
TIPS relationships. To provide a consistent evaluation between the travel time 
prediction methods it was decided to recalibrate the exponential speed versus 
weighted occupancy relationships on the basis of the simulated data. This 
calibration was conducted for each level of sensor accuracy data separately. The 
resulting parameter values are provided in Table 3. 

3.2 Evaluation results 

Four methods of estimating travel times were compared using the root-mean-
squared error (RMSE) between the actual and predicted travel times.  The 
performance of the methods was examined for the entire simulation period as 
well for selected sub-periods within the simulation so that the performance of the 
methods could be examined for various traffic conditions (e.g. congestion 
forming, congestion dissipating, etc.).  Rather than provide the error as an 
absolute measure (in seconds) the RMSE was divided by the mean true travel 
time to represent the error as a portion of the true travel time. The results of these 
comparisons are provided in Table 4 for an assumed sensor accuracy of 90%. 

The single regime TIPS method provides predicted travel times that under 
estimate or over estimate the true travel time by 17% on average. During 
uncongested periods, the method is more accurate and during periods of 
congestion or congestion forming, the errors are larger.  

The three-regime TIPS method provides better performance with an average 
error of 15.5% of the mean.  Again, the method performs better during periods of 
uncongestion and provides less accurate estimates during periods of congestion 
and when congestion is forming.   

The TIPS variant, in which separate speed versus weighted occupancy functions 
are used for each sensor station, provided performance that was essentially the 
same as the single-regime TIPS model. Consequently, this method was not 
considered for further analysis. 

The Kalman filter method provided the best results overall with an average 
prediction error equal to 14% of the mean travel time. This method also 
exhibited the most consistency in the prediction accuracy through out all the 
traffic conditions.   

The estimated travel times for the single-regime and three-regime TIPS methods 
and the Kalman filter method are depicted in Figure 8.  

The results discussed above indicate that the Kalman filter provides improved 
travel time predictions.  However, we are also interested to know how sensitive 
these results are to the accuracy of the sensors.  Consequently, we repeated the 



travel time predictions for two additional sensor accuracies, namely 80% and 
85%.  Figure 9 illustrates the resulting overall errors for the two TIPS methods 
and the Kalman filter method as a function of sensor accuracy.  Error is again 
quantified in terms of the RMSE divided by the mean true travel time.  

From these results it is clear that the Kalman filter method is least affected by the 
accuracy of the sensors, while the single-regime TIPS method is very sensitive to 
the sensor accuracy.  These results appear to confirm the previous results that the 
Kalman filter provides more accurate travel time predictions than do the existing 
TIPS methods. 

4 Conclusions and Recommendations 

The testing conducted as part of this study has demonstrated that the application 
of the Kalman filter to the problem of predicting travel times improves the 
estimates of the three-regime TIPS method by approximately 10%.  More 
importantly, the Kalman filter provides more accurate travel time predictions 
during periods of congestion forming, congestion, and congestion dissipating � 
the exact conditions for which predicted travel times are most valuable.  

The conclusions stated herein are made on the basis of a limited number of 
simulation results.  Consequently, it would seem appropriate that these 
conclusions be confirmed for a wider range of traffic conditions and beyond that, 
with actual field data.  

It is also worth stating that the Kalman filter method used in this study is not 
restricted to re-deployable FTMS but can also be applied for the estimation of 
travel times on permanent FTMS. 
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Figures 

Figure 1: Historical versus predicted travel times 

Figure 2: Single regime and three-regime models used by TIPS 

Figure 3: TIPS calculation of travel time for each link 

Figure 4: Schematic of hypothetical freeway segment  

Figure 5:  Macroscopic speed-flow-density relationship used in the simulation 

Figure 6: Temporal profile of traffic demands 

Figure 7: Individual vehicle travel times (Link 2 to end of link 6) 

Figure 8: Estimated and actual average travel times as a function of simulation 
time (sensor accuracy = 90%) 

Figure 9: Travel time prediction error as a function of sensor accuracy 
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Figure 1: Historical versus predicted travel times 
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Figure 2: Single regime and three-regime models used by TIPS 
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Figure 3: TIPS calculation of travel time for each link 
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Figure 4: Schematic of hypothetical freeway segment  
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Figure 5:  Macroscopic speed-flow-density relationship used in the simulation 
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Figure 6: Temporal profile of traffic demands 
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Figure 7: Individual vehicle travel times (Link 2 to end of link 6) 
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Figure 8: Estimated and actual average travel times as a function of simulation 

time (sensor accuracy = 90%) 
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Figure 9: Travel time prediction error as a function of sensor accuracy 

 

 



Tables 

Table 1: TIPS speed versus weighted occupancy parameter values 

Table 2:  Simulation speed-flow-density relationship parameters 

Table 3: Recalibrated parameter values for the TIPS speed versus weighted 
occupancy relationship 

Table 4: Prediction errors for sensor accuracy of 90%  
(Error = RMSE/mean travel time) 

 



 

Table 1: TIPS speed versus weighted occupancy parameter values 
 θ β 

Single Regime Model 127.82 -0.0417 0 ≤ Ow ≤ 100% 
95 -0.0022 0 < Ow ≤ 20% 

108.995 -0.0475 20 < Ow ≤ 35% Three-Regime Model 

25 -0.0117 35% < Ow ≤ 90% 

 



Table 2:  Simulation speed-flow-density relationship parameters 

Parameter Non-Work Zone Work Zone Ramps 
Free Speed, Sf (km/h) 110 95 60 
Speed at capacity, Sc (km/h) 90 80 45 
Jam density, Dj (pcu/lane-km) 120 120 120 
Capacity, Vc (pcu/h/lane) 2,200 2,000 1,800 

 



Table 3: Recalibrated parameter values for the TIPS speed versus weighted 
occupancy relationship 

Level of Accuracy 90% 85% 80% 

Parameters θ β θ β θ β 

Single regime 116.71 -0.0495 113.63 -0.0463 109.06 -0.0417 
110.24 -0.0416 109.99 -0.0409 110.42 -0.0409 
232.32 -0.0763 229.01 -0.075 181.56 -0.0649 Three-Regime 

24.548 -0.0086 24.77 -0.0083 27.094 -0.0092 

 



Table 4: Prediction errors for sensor accuracy of 90%  
(Error = RMSE/mean travel time) 

 

Period 

TIPS: 
Single 
regime 

TIPS: 
Three 

regime 
TIPS 

Variant 
Kalman 

Filter 

Uncongested (0-30 min) 6.1% 8.0% 6.3% 10.8% 
Congestion forming (30-72 min) 16.0% 16.7% 16.8% 15.9% 
Congested (72-96 min) 17.9% 13.6% 17.8% 11.6% 
Congestion Dissipating (96-120 min) 15.6% 14.0% 15.3% 10.0% 
Uncongested (120-150 min) 10.1% 8.4% 7.7% 9.1% 
Overall 17.0% 15.5% 17.2% 14.0% 
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