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Abstract

Empirical studies have shown that work zones are responsible for a large
proportion of non-recurrent congestion and have higher crash rates than similar
roadways without work zones. Consequently, a great deal of attention has been
focussed over the past several years on the management of traffic and safety
within work zones. A key component of traffic management in work zones is the
ability to notify travellers of the travel time they will experience if they elect to
travel through the work zone.

The currently available work zone FTMS use relatively crude travel time
estimation algorithms. Furthermore, these systems are able to provide estimates
only of the current travel time not the travel time that drivers entering the work
zone will experience (i.e. predictive travel time).

This paper examines the issues associated with estimating current and predictive
travel times in work zones and reviews approaches that have been suggested in
the literature. Several potential travel time prediction algorithms are presented,
including one that makes use of Kalman Filtering.

A field database for work zones containing sensor data from re-deployable
FTMS and true vehicle travel time data is not currently available. Consequently,
the algorithms presented in this paper are evaluated using data generated from
the INTEGRATION traffic simulation model. The evaluation considers a
number of factors including traffic conditions and sensor accuracy.
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1 Introduction

The management of traffic in highway work zones is of increasing concern to
motorists and to highway authorities. There are several likely reasons for this
increasing concern, including:

1. Motorists are generally experiencing longer and more congested trips
than they have in the past.

2. Aging infrastructure is requiring more frequent and/or more extensive
rehabilitation, resulting in increased frequency and duration of work
zones.

3. The high level of traffic demands on most urban freeways throughout a
long portion of the day means that lane closures associated with work
zones cause a much higher user delay cost than has been the case in the
past.

The continuing development of ITS technologies has led to the recent
development of commercially available re-deployable FTMS. These systems
typically consist of trailers on which there are mounted changeable message
signs (CMS), traffic sensors, such as video or microwave radar, wireless
communication devices, solar panels and/or a generator, and computer control
device. These systems are considered to be re-deployable as they can be brought
to a field site and made operational without any permanent installation. After the
construction project is finished and the FTMS is no longer needed, the entire
system can be removed from the site and deployed elsewhere.

Highway officials have recognized that one of the most frustrating aspects of
work zones for motorists is the highly variable and therefore often unexpected
delays that result from the work zone activities. One means of mitigating this
frustration is to provide motorists with a real-time estimate of the travel time
they can expect to experience traversing the work zone. Providing this
information has two main effects:

1. Motorists have the option to select an alternative route (though in most
instances they may have little information about the conditions on
alternative routes).

2. Motorists tend to find the delay less disruptive when they know how
long the delay will be.

Most existing re-deployable FTMS that provide estimates of travel time do so on
the basis of historical information. These systems typically estimate the travel
time of vehicles that have traversed the roadway section and post this travel time
on the CMS at the upstream end of the road segment. This can be illustrated in
Figure 1 which depicts individual vehicle trajectories over space and time. The
vehicles are approaching a work zone that acts as a capacity bottleneck. The
vehicle arrival rate is higher than the capacity of the work zone resulting in the
formation of a queue, which is indicated in Figure 1 by the change in speed of



vehicles as they transition from the uncongested traffic stream approaching the
work zone to the congested queue that grows upstream from the work zone.

Consider a vehicle denoted as V; which experiences a travel time of tt;. If this
travel time is measured, or approximated on the basis of measured traffic
conditions, and is posted on a CMS at sensor station S, then the vehicle V, will
past the CMS at the time that the travel time is posted. However, as the queue is
growing, the travel time that vehicle V, experiences (tt) is actually considerable
longer than the travel time posted on the CMS.

There are many studies reported in the literature related to the area of travel time
prediction. These studies can be divided into two categories, namely (1) those
that directly measure travel time using specializes infrastructure such as
Automatic Vehicle Identification (AVI) or cellular telephone tracking [1,2,3]and
(2) those that indirectly estimate travel time on the basis of traffic characteristics
such as volume, speed and occupancy obtained from traditional traffic sensors
such as loop detectors [4,5,6,7,8]. Even though “direct” travel time prediction
techniques generally improve travel time prediction accuracy, the specialized
infrastructure these methods require are not yet widely deployed.

Most of the existing indirect travel time prediction methods assume speed data
are available from traffic sensors. However, re-deployable FTMS have roadside
sensors that generally cannot measure speed accurately. Consequently, many
existing travel time estimation methods are not applicable to work zone FTMS.

The TIPS system (Travel Time Prediction System) [9] is one notable work zone
FTMS that is able to provide travel time estimates. This system consists of
microwave radar traffic sensors, trailer mounted changeable message signs
(CMS), micro controller, 220 MHz radios for transmitting traffic data and an on-
site PC with TIPS software. The TIPS system has been widely deployed in the
US [10] for work zone traffic control.

A review of the literature revealed one field evaluation of the accuracy of the
TIPS travel time estimation capability [11]. This study was conducted at a single
work zone on northbound direction of I-75 in the Dayton, Ohio area. 1-75
consists of three lanes in this area. The work zone activities resulted in the
closure of one lane over a length of approximately 6.5 km. The TIPS system
consisted of 3 CMS with the first located approximately 20 km upstream of the
work zone. The remaining two CMS were spaced approximately 16 km
upstream and 12 km upstream of the work zone respectively.

The TIPS system was configured to provide estimates of the travel times drivers
would experience from the location of the CMS to the end of the work zone.
Estimates were to the nearest 4 minutes and estimates were updated every 3
minutes.

The evaluation was conducted by the Ohio DOT over a period of 3 days. Three
floating vehicles were used to travel through the work zone area and record the
predicted travel time posted on the each of the CMSs and the actual travel time



experienced. A total of 119 runs were conducted over the 3 days. The authors of
the study report that 88% of all the predicted travel times recorded as part of the
evaluation were within 4 minutes of the recorded true travel time. The authors
conclude that the TIPS system provides significant improvement over any static
non-real time display assuming proper placement of the microwave sensors.
However they also note that errors in travel time prediction can be quite large
relative to the observed travel time under certain conditions.

In light of the findings from this field evaluation of TIPS [11], the objective of
this research is in to investigate the potential for improving upon the travel time
prediction accuracy of the TIPS system.

This paper is organized as follows. The next section describes the existing TIPS
travel time estimation methodology and the proposed methods. Section 3
describes the evaluation of the travel time prediction methods. Conclusions and
recommendations are provided in Section 4.

2 Travd timeestimation methods

21 TIPS

The TIPS travel time prediction method estimates travel time on the basis of
calibrated speed versus weighted occupancy relationships and known roadway
lengths. Weighted occupancy is computed on the basis of individual lane
occupancies as defined in Equation 1.

0,=Y 10 (D
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where:
Ow = weighted occupancy (%)
G = measured occupancy in lane i (%)
Ai = weight factor for lanei (0 <A< 1)
n = number of lanes

The weight factors are computed using Equation 2.
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The TIPS system makes use of microwave radar traffic sensors that are not
capable of measuring traffic speeds. Consequently, the calibration of the speed
versus weighted occupancy relationship was conducted by collecting vehicle
travel time data [9]. Video cameras were positioned approximately 2 km apart
upstream of a work zone on I-70 and the travel times of individual vehicles were
extracted manually by identifying vehicles as they entered and exited the section.
The travel times were converted to an average travel speed by dividing the
section length by the travel time. These average travel speeds were used to
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calibrate the speed versus weighted occupancy relationships. Approximately 15
hours of data were collected.

Two exponential relationships were calibrated; a single regime and a three-
regime model. Each model was of the form in Equation 3. Parameter values are
provided in Table 1 and the relationships are illustrated in Figure 2. The authors
concluded that the 3-regime model provides better prediction accuracy and
recommended its use. It must be noted, that a single set of parameter values is
used for all sensor stations.

S, = 6" A3)
where:
S = average speed computed for sensor station j (ft/sec)
o, = calibration coefficients
Ow = weighted occupancy (%)

Figure 3 illustrates the calculation method used to estimate the travel time
between two successive TIPS sensor stations. The weighted occupancy is
computed at each sensor station and is applied to the three-regime speed versus
occupancy relationship to estimate speed. The travel time for the road segment
between the two sensor stations is computed as in Equation 4.
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where:
Tij+i = travel time from sensor j to sensor j+1
djji = distance from sensor j to sensor j+1
= speed measured at sensor |
Sa = speed measured at sensor j+1

2.2 Variation of TIPS

This method is a simple variation of the TIPS method described in the previous
section. In this variation, a speed versus weighted occupancy relationship is
calibrated for each sensor station rather than using a single set of parameter
values for all sensor stations. This is the only difference from the TIPS method
described in the previous section.

2.3 Kalman Filter

Kalman Filtering, one of the most advanced methods in modern control theory,
is based on theory proposed by Kalman [12] and may be applied to short term
stationary or nonstationary stochastic phenomena. In traffic it can be applied for
demand and travel time prediction to obtain increased accuracy.



Traditional estimation methods are able to only provide estimates of the current
travel time through the road section, rather than the travel time that vehicles will
experience (predictive travel times). Kalman filtering makes use of previous and
current observations to provide predictions of future travel times.

In this study, Kalman Filtering is used to predict travel time based on real-time
travel time information provided by the TIPS system using the 3-regime speed
versus occupancy relationship.

The Kalman filter method is based on two primary relationships denoted the
process equation (Equation 5) and the observation equation (Equation 6).

Xk = Fk,k—lxk—l + W, )
Y = H X+ v, (6)
where:
Xk = travel time at time interval k
F ke = transition parameter which is externally determined.
w = anoise term that has a normal distribution with zero mean and
a variance of Qy;.
Y = travel time for interval k provided by TIPS system or other
proposed methods.
v = observation error at time interval K which is assumed to have a
normal distribution with zero mean and a variance of R,.
Hy = identity matrix, which in this application is a single dimension

and consequently has a value of 1.

Parameters, Fyy |, Q1 and Ry, are predetermined in advance from empirical data.
If no value is available for Q. and Ry, it is customary to express them as
diagonal matrices [13].

Based on the objective of minimum state error, the travel time prediction
equation can be expressed as:

>2|< = Xk_ +G (Y= X ) (7
where:
Gy = Kalman gain value which is adjusted continuously by the
recursive process
xAk‘ = the optimum estimate of Xy before Yy is obtained
Xk = the travel time at time interval K to be predicted

The actual method of implementing the above equations, beginning at time k=0,
is specified below:

Step 1. Let error covariance P(0) = E[(X(0)— )?0)2] and )20 = E[(X(0)]



Step 2. State estimate extrapolation X, =F, )A(O
Error covariance extrapolation P =F, |:>(())|:1T0 +Q,

Step 3. Calculate Kalman Gain Value
G =R (R +R)"
Step4. Calculate the new state estimate and error covariance
X, =X, +G,/(y, - X))
P=0-G)R
Step 5. Let k=k+1 and go back to Step 2 until the preset time period ends

The next section describes the quantitative comparison of the TIPS system
(section 2.1) with the variant of the TIPS system (section 2.2) and the Kalman
filter (section 2.3).

3 Evaluation of travel time estimation methods

3.1 Test network

At the time of this study, a field database containing both sensor data (i.e.
volume and occupancy) for a work zone and the corresponding actual travel
times was not available. The collection of such data is time consuming and
costly. Furthermore, it is difficult to control external factors (such as weather,
demand, incidents, etc.) when collecting field data. Consequently, in this study, a
microscopic simulation model was used to generate the data (sensor and travel
time) that were used to evaluate existing and proposed travel time estimation
algorithms. For this study, the INTEGRATION traffic simulation model was
used, however, any microscopic simulation model capable of modelling
freeways and recording individual vehicle travel times could have been used.

A typical freeway work zone was modelled as illustrated in Figure 4. The
freeway segment consists of an off-ramp and on-ramp junction followed by the
work zone. The freeway, consisting of 7 links, has 3 lanes except in the work
zone where the cross section is reduced to 2 lanes. Furthermore, the capacity of
the freeway lanes in the work zone is reduced from the 2,200 pcu/h/lane to 2,000
pcu/h/lane as a result of reduced lateral clearances and/or reduced lane widths.
There are 8 sensor stations (labelled S1, S2..., SB8) located along the freeway
section. Consistent with the objective of re-deployable traffic management
systems, it is assumed that these sensors are roadside sensors (e.g. radar or
video) rather than in-pavement sensors such as loop detectors.

The INTEGRATION model requires the specification of the four parameters that
define Van Aerde’s steady-state macroscopic speed-flow-density relationship.



The parameter values used in this study are provided in Table 2 while Figure 5
illustrates the corresponding macroscopic speed-flow relationships.

A temporally varying traffic demand was created to be representative of a typical
peak period in which traffic demands are initially sufficiently low that no
congestion results upstream of the work zone. However, as demand increases,
congestion begins to form at the bottleneck caused by the lane reduction at the
work zone and this congestion spills back upstream and eventually interferes
with traffic entering and exiting the freeway at the ramps. The congestion does
not spill off the upstream end of the network before the traffic demand declines
and the congestion dissipates before the simulation period ends. The temporal
variation, in terms of the fraction of the base rate, is the same for all three origin-
destination combinations (i.e. mainline to off-ramp; mainline to mainline; and
on-ramp to mainline) and is illustrated in Figure 6. Vehicles are generated with
random (i.e. shifted negative exponential headways).

The application of these traffic demands to the test network results in a travel
time profile as illustrated in Figure 7. In this figure, the x-axis represents the
time at which vehicles passed the start of link 2. The y-axis represents the time
the vehicle required to travel from the start of link 2 to the end of link 6.
Naturally, only vehicles that are travelling from the mainline to the mainline are
included within these results. Vehicles that enter or exit the freeway via the
ramps do not traverse all of links 2, 3, 4, 5, and 6 and therefore are not depicted.

INTEGRATION models loop detectors that provide speed, volume, and
occupancy output at a user defined polling interval duration. In this study we
have used a polling interval duration of 90 seconds. Unlike field sensors, the
simulation output does not contain measurement errors. Unfortunately, the
magnitude and distribution of these measurement errors for various sensor
technologies, and in particular microwave radar, does not appear to be reported
in the literature. Consequently, we have represented the error in terms of
Gaussian noise having a mean of zero and a standard deviation that is specified
by the coefficient of variation (COV). Three levels of sensor error were
considered; COV = 10%, 15%, and 20%. Increasing values for COV imply
decreasing sensor accuracy and therefore we refer to three levels of sensor
accuracy as 90% accurate, 85%, and 80%. Consequently, Equation 8 was used to
transform all sensor output from the simulation to sensor measurements
containing random errors.

Xn=X+2z0 (3
where:
Xm = traffic characteristic containing sensor measurement error
X = traffic characteristic containing no error
z = normally distributed random variable with mean of 0 and

standard deviation of 1

12
= DU -6
i=1



Ui = uniformly distributed random variable (0 < U; < 1.0)
o standard deviation of measurement error (o= COV X X)

In the course of the research, it was observed that the speed versus weighted
occupancy data produced by the simulation model exhibited substantially
different characteristics than did those data used by Pant [9] for calibrating the
TIPS relationships. To provide a consistent evaluation between the travel time
prediction methods it was decided to recalibrate the exponential speed versus
weighted occupancy relationships on the basis of the simulated data. This
calibration was conducted for each level of sensor accuracy data separately. The
resulting parameter values are provided in Table 3.

3.2 Evaluation results

Four methods of estimating travel times were compared using the root-mean-
squared error (RMSE) between the actual and predicted travel times. The
performance of the methods was examined for the entire simulation period as
well for selected sub-periods within the simulation so that the performance of the
methods could be examined for various traffic conditions (e.g. congestion
forming, congestion dissipating, etc.). Rather than provide the error as an
absolute measure (in seconds) the RMSE was divided by the mean true travel
time to represent the error as a portion of the true travel time. The results of these
comparisons are provided in Table 4 for an assumed sensor accuracy of 90%.

The single regime TIPS method provides predicted travel times that under
estimate or over estimate the true travel time by 17% on average. During
uncongested periods, the method is more accurate and during periods of
congestion or congestion forming, the errors are larger.

The three-regime TIPS method provides better performance with an average
error of 15.5% of the mean. Again, the method performs better during periods of
uncongestion and provides less accurate estimates during periods of congestion
and when congestion is forming.

The TIPS variant, in which separate speed versus weighted occupancy functions
are used for each sensor station, provided performance that was essentially the
same as the single-regime TIPS model. Consequently, this method was not
considered for further analysis.

The Kalman filter method provided the best results overall with an average
prediction error equal to 14% of the mean travel time. This method also
exhibited the most consistency in the prediction accuracy through out all the
traffic conditions.

The estimated travel times for the single-regime and three-regime TIPS methods
and the Kalman filter method are depicted in Figure 8.

The results discussed above indicate that the Kalman filter provides improved
travel time predictions. However, we are also interested to know how sensitive
these results are to the accuracy of the sensors. Consequently, we repeated the



travel time predictions for two additional sensor accuracies, namely 80% and
85%. Figure 9 illustrates the resulting overall errors for the two TIPS methods
and the Kalman filter method as a function of sensor accuracy. Error is again
quantified in terms of the RMSE divided by the mean true travel time.

From these results it is clear that the Kalman filter method is least affected by the
accuracy of the sensors, while the single-regime TIPS method is very sensitive to
the sensor accuracy. These results appear to confirm the previous results that the
Kalman filter provides more accurate travel time predictions than do the existing
TIPS methods.

4 Conclusions and Recommendations

The testing conducted as part of this study has demonstrated that the application
of the Kalman filter to the problem of predicting travel times improves the
estimates of the three-regime TIPS method by approximately 10%. More
importantly, the Kalman filter provides more accurate travel time predictions
during periods of congestion forming, congestion, and congestion dissipating —
the exact conditions for which predicted travel times are most valuable.

The conclusions stated herein are made on the basis of a limited number of
simulation results.  Consequently, it would seem appropriate that these
conclusions be confirmed for a wider range of traffic conditions and beyond that,
with actual field data.

It is also worth stating that the Kalman filter method used in this study is not
restricted to re-deployable FTMS but can also be applied for the estimation of
travel times on permanent FTMS.
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Figures

Figure 1: Historical versus predicted travel times

Figure 2: Single regime and three-regime models used by TIPS

Figure 3: TIPS calculation of travel time for each link

Figure 4: Schematic of hypothetical freeway segment

Figure 5: Macroscopic speed-flow-density relationship used in the simulation
Figure 6: Temporal profile of traffic demands

Figure 7: Individual vehicle travel times (Link 2 to end of link 6)

Figure 8: Estimated and actual average travel times as a function of simulation
time (sensor accuracy = 90%)

Figure 9: Travel time prediction error as a function of sensor accuracy
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Tables

Table 1: TIPS speed versus weighted occupancy parameter values
Table 2: Simulation speed-flow-density relationship parameters

Table 3: Recalibrated parameter values for the TIPS speed versus weighted
occupancy relationship

Table 4: Prediction errors for sensor accuracy of 90%
(Error = RMSE/mean travel time)



Table 1: TIPS speed versus weighted occupancy parameter values
0 B

Single Regime Model 127.82 | -0.0417 0= 0, =100%
95 | -0.0022 0<0,=<20%
Three-Regime Model | 108.995 | -0.0475 20 <0, < 35%
25 | -0.0117 35% < O, = 90%




Table 2: Simulation speed-flow-density relationship parameters

Parameter Non-Work Zone | Work Zone | Ramps
Free Speed, St (km/h) 110 95 60
Speed at capacity, S; (km/h) 90 80 45
Jam density, D; (pcu/lane-km) 120 120 120
Capacity, V; (pcu/h/lane) 2,200 2,000 1,800




Table 3: Recalibrated parameter values for the TIPS speed versus weighted
occupancy relationship

Level of Accuracy 90% 85% 80%
Parameters 0 Y 0 B 0 B
Single regime 116.71 | -0.0495 | 113.63 | -0.0463 | 109.06 | -0.0417
110.24 | -0.0416 | 109.99 | -0.0409 | 110.42 | -0.0409
Three-Regime 232.32 | -0.0763 | 229.01 | -0.075 | 181.56 | -0.0649
24,548 | -0.0086 | 24.77 | -0.0083 | 27.094 | -0.0092




Table 4: Prediction errors for sensor accuracy of 90%
(Error = RMSE/mean travel time)

TIPS: TIPS:

Single Three TIPS Kalman
Period regime regime Variant Filter
Uncongested (0-30 min) 6.1% 8.0% 6.3% 10.8%
Congestion forming (30-72 min) 16.0% 16.7% 16.8% 15.9%
Congested (72-96 min) 17.9% 13.6% 17.8% 11.6%
Congestion Dissipating (96-120 min) 15.6% 14.0% 15.3% 10.0%
Uncongested (120-150 min) 10.1% 8.4% 7.7% 9.1%
Overall 17.0% 15.5% 17.2% 14.0%
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